Reconstitution of papillomavirus E2-mediated plasmid maintenance in Saccharomyces cerevisiae by the Brd4 bromodomain protein.

نویسندگان

  • Angela R Brannon
  • Julia A Maresca
  • Jef D Boeke
  • Munira A Basrai
  • Alison A McBride
چکیده

The papillomavirus E2 protein functions in viral transcriptional regulation, DNA replication, and episomal genome maintenance. Viral genomes are maintained in dividing cells by attachment to mitotic chromosomes by means of the E2 protein. To investigate the chromosomal tethering function of E2, plasmid stability assays were developed in Saccharomyces cerevisiae to determine whether the E2 protein could maintain plasmids containing the yeast autonomous replication sequence replication element but with the centromeric element replaced by E2-binding sites. E2 expression was not sufficient to maintain such plasmids, but plasmid stability could be rescued by expression of the mammalian protein Brd4. In the presence of both Brd4 and E2 proteins, plasmids with multiple E2-binding sites were stable without selection. S. cerevisiae encodes a homolog of Brd4 named Bdf1 that does not contain the C-terminal domain that interacts with the E2 protein. A fusion protein of Bdf1 and the Brd4 C-terminal "tail" could support E2-mediated plasmid maintenance in yeast. Using a panel of mutated E2 proteins, we determined that plasmid stability required the ability of E2 to bind DNA and to interact with Brd4 and mammalian mitotic chromosomes but did not require its replication initiation and transactivation functions. The S. cerevisiae-based plasmid maintenance assays described here are invaluable tools for dissecting mechanisms of episomal viral genome replication and screening for additional host protein factors involved in plasmid maintenance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cellular Bromodomain Protein Brd4 has Multiple Functions in E2-Mediated Papillomavirus Transcription Activation

The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transc...

متن کامل

Interaction of the Bovine Papillomavirus E2 Protein with Brd4 Tethers the Viral DNA to Host Mitotic Chromosomes

The papillomavirus E2 protein tethers viral genomes to host mitotic chromosomes to ensure genome maintenance. We have identified the bromodomain protein Brd4 as a major cellular interacting partner of the bovine papillomavirus E2. Brd4 associates with mitotic chromosomes and colocalizes with E2 on mitotic chromosomes. The site of E2 binding maps to the C-terminal domain of Brd4. Expression of t...

متن کامل

Brd4-Mediated Nuclear Retention of the Papillomavirus E2 Protein Contributes to Its Stabilization in Host Cells

Papillomavirus E2 is a multifunctional viral protein that regulates many aspects of the viral life cycle including viral episome maintenance, transcriptional activation, and repression. E2 is degraded by the ubiquitin-proteasome pathway. Cellular bromodomain protein Brd4 has been implicated in the stabilization of the E2 protein. E2 normally shuttles between the cytoplasm and the nucleus. In th...

متن کامل

Brd4-independent transcriptional repression function of the papillomavirus e2 proteins.

The papillomavirus E2 protein is a critical viral regulatory protein with transcription, DNA replication, and genome maintenance functions. We have previously identified the cellular bromodomain protein Brd4 as a major E2-interacting protein and established that it participates in tethering bovine papillomavirus type 1 E2 and viral genomes to host cell mitotic chromosomes. We have also shown th...

متن کامل

Analysis of the Papillomavirus E2 and Bromodomain Protein Brd4 Interaction Using Bimolecular Fluorescence Complementation

The human papillomavirus (HPV) vaccines effectively protect against new infections of up to four HPV subtypes. However, these vaccines are not protective against many other clinically relevant HPV subtypes and are ineffective at treating established HPV infections. There is therefore a significant need for antiviral treatments for persistent HPV infections. A promising anti-HPV drug target is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 8  شماره 

صفحات  -

تاریخ انتشار 2005